1.

(1) Find the limits. If limit does not exist, prove it.

\[\lim_{x \to 0} \frac{2}{2 + 2^x} \]

\[\lim_{x \to 0} (1 + 2x + 3x^2)^{\frac{1}{x}} \]

(2) Find the extrema of the following function.

\[z = f(x, y) = x^3 - 9xy + y^3 \]
2.

(1) The function G is defined as follow:
$G(x, y, z) = 3x^2 + 2yz + xz$
(a) What are the gradient, the Hessian and the Laplacian of G?
(b) Find the directional derivative in the direction of unit vector $u = (0, 0, 1)$ at the point $(1, 1, 0)$. Interpret this result.

(2) Consider the surface given by:
$G(x, y, z) = 3x^2 + 2yz + xz = C$ (C is a constant)
(a) Find the unit normal vector at the point $(1, 1, 0)$.
(b) Find the equation of the tangent plan at the point $(1, 1, 0)$.
3.

(1) Answer the following questions for the differential equation:

\[x'(t) + t \cdot x(t) = t \cdot x(t)^3 \]

(a) When \(z(t) = x(t)^2 \), find the differential equation for \(z(t) \).

(b) Solve the differential equation in (a).

(c) Solve the differential equation for \(x(t) \).

(2) When \(x > 0 \), solve the following differential equation:

\[y''(x) + \frac{4}{x} \cdot y'(x) + \frac{2}{x^2} \cdot y(x) = 0 \]
4. Answer the following questions for the matrix A.

$$A = \begin{bmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{bmatrix}$$

(1) Find all the eigenvalues and eigenvectors of which the norms are unity.

(2) Find the coefficients a_3, a_2, a_1 and a_0 of characteristic polynomial

$$\det(A - \lambda E) = a_3\lambda^3 + a_2\lambda^2 + a_1\lambda + a_0,$$

where E is the unit matrix.

(3) Calculate the following equation with the coefficients obtained in the problem (2).

$$a_3A^3 + a_2A^2 + a_1A + a_0E$$

(4) Compute the inverse matrix A^{-1} by using the result of problem (3).
5. The probability density function of the random variable \(X \) is denoted by

\[
f(x) = ae^{-\lambda|x|},
\]
where \(a \) and \(\lambda \) are positive constants. Answer the following questions. Use the following formula if necessary.

\[
\int_0^\infty x^2 e^{-\lambda x} dx = \frac{2}{\lambda^3} \quad (\lambda > 0).
\]

(1) Find the values of \(a \) and \(\lambda \) such that the variance of \(X \) is 1.
(2) Find the cumulative distribution function \(F(x) \) of \(X \) using the values of \(a \) and \(\lambda \) found in the problem (1).
(3) Find the cumulative distribution function of \(Y = X^2 \).